Daniel Sonntag , Sonja Zillner , Patrick van der Smagt , András Lőrincz Overview of the CPS for Smart Factories Project : Deep Learning , Knowledge Acquisition , Anomaly Detection & Intelligent User Interfaces

نویسندگان

  • Daniel Sonntag
  • Sonja Zillner
  • Patrick van der Smagt
  • András Lőrincz
چکیده

Industry 4.0 factories become more and more complex with increased maintenance costs. Reducing costs by cyber-physical (CP) controllers should ensure the commercialization of the CPS for smart factory project results. We implement multi-adaptive CP controllers in the following domains: industrial robot arms, car manufacturing, steel industry, and assembly lines in general. The main objective is to implement such controllers for these application domains and let the industry partners provide feedback about the cost reduction potential. In this paper, we describe the technical infrastructure including deep learning and knowledge acquisition submodules, followed by anomaly detection modules and intelligent user interfaces in the IoT (Internet of Things) paradigm. In addition, we report on three concrete use case implementations of industrial robots and anomaly modeling, knowledge management and anomaly treatment in the steel domain, and anomaly detection in the energy domain.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Survey on Deep Learning Toolkits and Libraries for Intelligent User Interfaces

This paper provides an overview of prominent deep learning toolkits and, in particular, reports on recent publications that contributed open source software for implementing tasks that are common in intelligent user interfaces (IUI). We provide a scientific reference for researchers and software engineers who plan to utilise deep learning techniques within their IUI research and development pro...

متن کامل

Robust Detection of Anomalies via Sparse Methods

The problem of anomaly detection is a critical topic across application domains and is the subject of extensive research. Applications include finding frauds and intrusions, warning on robot safety, and many others. Standard approaches in this field exploit simple or complex system models, created by experts using detailed domain knowledge. In this paper, we put forth a statistics-based anomaly...

متن کامل

Comparing Data Sources and Architectures for Deep Visual Representation Learning in Semantics

2012-2014 Eötvös Loránd University Grade Outstanding · Faculty of Informatics · Information Systems Master of Science Thesis: Comparison of different methods for semantic evaluation of symbol series based on language model generation and common sense knowledge Description: The thesis project involved natural language sentence generation methods from incomplete pictorial symbol series in order t...

متن کامل

DOLCE ergo SUMO: On Foundational and Domain Models in SWIntO (Smart Web Integrated Ontology)

Increased availability of mobile computing, such as personal digital assistants (PDAs), creates the potential for constant and intelligent access to up-to-date, integrated and detailed information from the Web, regardless of one’s actual geographical position. Intelligent question-answering requires the representation of knowledge from various domains, such as the navigational and discourse con...

متن کامل

Variational Inference for On-line Anomaly Detection in High-Dimensional Time Series

Approximate variational inference has shown to be a powerful tool for modeling unknown complex probability distributions. Recent advances in the field allow us to learn probabilistic models of sequences that actively exploit spatial and temporal structure. We apply a Stochastic Recurrent Network (STORN) to learn robot time series data. Our evaluation demonstrates that we can robustly detect ano...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2016